Vector Meson Photoproduction in UPCs at RHIC

W. Schmidke BNL CFNS (virtual) Workshop: Photon-Induced Interactions April 26-28, 2021

Ultra-Peripheral Collisions (UPC) & VM,
 STAR detector & UPC data selection

RHIC versatility:

• Au+Au: UPC J/ψ & ρ

• d+Au: UPC J/ψ

polarized p↑+Au: UPC J/ψ

Ultra-Peripheral Collisions (UPC)

- UPC: b > 2R, hadronic interactions suppressed
- Large flux of photons coming from Weizsaecker-Williams:

WW photon from one (high Z Au) beam particle

→ photoproduction on other beam particle:

• e.g. J/ ψ production, sensitive to gluons:

- coherent, off whole nucleus, large R \leftrightarrow low $p_{_{\!\scriptscriptstyle T}}$

incoherent, off individual nucleons, small R ↔ high p
 elastic γ+p→J/ψ+p

inelastic $\hat{y}+p \rightarrow J/\psi+p+X$ (nucleon dissociation)

The STAR detector, data selection

TPC: slow detector, many bunch xings tracking & dE/dx

TOF: fast detector, triggering

BBC: forward scint. around beam

Magnet

ZDC: ±18m from IP

0° calorimeters, forward neutrons

Trigger:

• J/ ψ →ee: back-to-back showers in BEMC ρ → $\pi\pi$: hits in TOF & ZDCs (Coulomb excitation)

veto BBC: reject hadronic central collisions

Data sets

 ρ : 2010 AuAu L = 1.1 nb⁻¹

J/ψ: 2015 p↑Au L = 140 nb⁻¹

 $2016 \text{ AuAu L} = 12 \text{ nb}^{-1}$

 $2016 \text{ dAu L} = 93 \text{ nb}^{-1}$

Offline selection:

- 2 tracks match BEMC showers or TOF hits, vertex in STAR center
- Tracks well reconstructed, dE/dx select ee or $\pi\pi$, reject hadron pairs

3

UPC in Au+Au

AuAu: gluon content of Au

Models

<u>UPC photon flux:</u> from STARlight description

<u>γ</u><u>Au</u>:

- STARlight:
 - γ+p→J/ψ+p from HERA data
 - $\Rightarrow \gamma + Au \rightarrow J/\psi + Au$ classical Glauber, some gluon shadowing
- Sartre, dipole model w/ saturation:
 - bSat dipole cross section
 - amplitudes A from ensemble nuclear configurations
 - Good-Walker:

$$\sigma_{tot} \propto \langle |A|^2 \rangle$$
 $\sigma_{coh} \propto |\langle A \rangle|^2$

$$\sigma_{\text{inc}} = \sigma_{\text{tot}} - \sigma_{\text{coh}} = \langle |A|^2 \rangle - |\langle A \rangle|^2 = \text{variance}(A)$$

STARlight:
Comput.Phys.Commun.
212 (2017) 258
Sartre:
Comput.Phys.Commun.
185 (2014) 1835
Phys.Lett.B 803
(2020) 135277

UPC processes in Au+Au

- Photoproduction vector meson V:
 - coherent, off nucleus, low p₊
 - incoherent, off nucleus, high p_{T} elastic $\gamma+p\rightarrow V+p$ inelastic $\gamma+p\rightarrow V+p+X$ (nucleon dissociation)

$$J/\psi \rightarrow e^+ + e^-$$

• QED 2γ (m_{ee} continuum):

$$\gamma + \gamma \rightarrow e^+ + e^-$$

(yesterday's topic, today's background)

$$\psi(2S) \rightarrow e^+ + e^- (m_{ee} \sim m_{\psi(2S)})$$

$$\psi(2S) \rightarrow J/\psi + X$$

 $J/\psi \rightarrow e^+ + e^- (m_{ee} \sim m_{J/\psi})$ (feeddown)

Statistics sensitive to only $\psi(2S)$ coherent

Au+Au: data features

- \bullet p_T vs. m_{ee} for opp. sign pairs:
- High stat. features clear:
 - coherent J/ ψ @ low p_T & rad. tail lower m_{ee}, higher p_T
 - incoherent J/ψ @ high p_τ
 - QED 2γ continuum @ low p₋

- Small like sign contamination, mostly @ low m_e
- Take as combinatoric bkg.: final distributions = opposite sign - like sign

UPC procs→data comparison: m

- UPC processes (slide 3) generated w/ STARlight, modifications:
 - $\textbf{p}_{_{\! T}}$ of coherent J/ $\!\psi$ & 2γ too high, reweighted to match data
- processes → STAR simulation → templates; fit sum to data

- Good description of data: VM peaks & rad. tails; 2γ shape ~3 orders mag. in σ J/ ψ p_{τ} coherent/incoherent components
- Use templates for: background subtractions, acceptance corrections

$J/\psi p_{\tau}^2 \sim |t| distribution$

- Subtract non-direct J/ ψ components (2 γ , feeddown)
- Cross section: $d\sigma/dp_{\tau}^{2}$ $(p_{\tau}^{2} \sim |t|)$
- 2 components clear, data & models:
 coherent (low p_r²) & incoherent (high p_r²)

- Data ~40% STARlight, simple model inadequate
- Sartre close in magnitude
- Highest p₊² data rise faster than models

AuAu→e⁺e (Au/Au*+Xn)(Au/Au*+Xn) √s_{nn} = 200 GeV

Incoherent J/ ψ high $p_{\tau}^2 \sim |t|$ distribution

Empirical approach:

- STARlight elastic + H1 param.* inelastic (nucleon dissociation) exp(-4·|t|) (f_{inel}/f_{el})·(1 + 0.45·|t|)^{-3.58} *Eur. Phys. J. C73 (2013) 2466
- Good description shape → high p₊²

Sartre model extension*:

- Add subnucleonic fluctuations to nuclear configurations
- Very good description magnitude, shape → high p_T² *_{T. Toll @ DIS 2021}

Coherent J/ ψ low p₋²~|t| distribution

Also subtract: STARlight incoherent fit to data

- $d\sigma/dp_{\tau}^2 \sim 0$ for $p_{\tau}^2 > 0.1$ (GeV/c)²
- Total $\sigma = \int dp_{\tau}^2$

data: 219 \pm 5 (stat.) μ b

(scale uncert. ~10%)

STARlight: 285 μb

Sartre: 222 µb

- Data/STARlight ~25%: shadowing; lowest p_T² data fall steeper
- Sartre: good description magnitude & shape @ lowest p_T²
- Both models \sim data magnitude in higher p_{τ}^{2} tail
- Diffractive dips in Sartre \to smeared by UPC γ $\textbf{p}_{_{\! T}}$ in STARlight data do not distinguish

UPC ρ in Au+Au

- UPC ρ photoproduction:
 - lose pQCD hard scale m $_{_{\rm C}}$ w.r.t. J/ ψ photoproduction

STAR collab., Phys. Rev. C 96 (2017) 54904

- But: lower VM mass → much higher UPC cross section → statistics
- can study diffractive structure in more detail

- Rich structure in $m(\pi\pi)$ spectrum:
 - ρ resonance
 - ω resonance
 - ππ continuum
 - interference between all

- ρ component $|t| \sim p_T^2$ distribution:
 - coherent low |t|
 - incoherent high |t|
 - fit incoherent dipole form factor, subtract under coherent 11

UPC ρ in Au+Au

- Coherent |t| distribution, diffractive features clear:
 - 0th & 1st order peaks
 - 1st & 2nd order minima

- Fourier transform
 |t| → impact parameter b:
 - uncertainty b~0 ↔ cutoff high |t|
 - sharp edges
 - negative high b ↔
 destructive interference |t|~0

Lowest p₋²~|t| distributions

- Interference: two sources γ emitter:
- Observed high stat. UPC ρ:

• J/ ψ : zoom lowest p_T^2

• Dip in lowest p_T² bin:
consistent with interference

§

(bin size $\sim p_T^2$ resolution, precludes finer study)

Nuclear dissociation @ EIC

Significant program @ EIC:

- Nuclear imaging via coherent J/ψ |t|
- EIC statistics: several peaks/minima
- But: higher order features below orders of magnitude incoherent
- Incoherent scattering can breakup nucleus:
 - or leave an excited A*
- Either leaves low p_T p,n,y may hit forward taggers
- BeAGLE[†]:
 - model of A,A* dissociation
 - model realistic taggers
 - here e.g. incoherent &
 levels of n, γ, p tag rejection

†https://wiki.bnl.gov/eic/index.php/BeAGLE

Nuclear dissociation UPCs \leftrightarrow J/ ψ p.

2 mechanisms nuclear dissociation in UPC

 Coulomb excitation: coherent & incoherent

Incoherent w/ breakup:

- ZDCs each side: tag ≥1 neutron with ~ nucleon beam energy (100 GeV)
- J/ ψ p_{τ}: at least 1 n either side vs. no neutrons either side (0n0n)

- Low p₊ coherent with & w/o neutrons
- High p_T incoherent usually produces neutron
- Relevant @ EIC: coherent/incoherent VM tagging compare models e.g. BeAGLE

see talks by: Wan Chang Spencer Klein

UPC J/ψ in d+Au

- Deuteron is simplest nucleus, step 1 understanding nuclear effects
- Will study in detail @ EIC:

Already have unique Q²~0 data,
 Au'. UPC @ RHIC:

Can test d wave functions e.g. AV18, Hulthen

As for AuAu:

- J/ ψ sensitive to *d* gluon content
- Dipole model w/ saturation, CGC
 - Coherent scattering
 - Incoherent scattering: subnucleonic (shape) fluctuations?
- Single neutron, clean breakup tagging

UPC J/ψ in d+Au

 Dominant process: high Au Z emits γ opposite d↔Au negligible

And QED 2-γ
 e⁺e⁻ continuum:

- Fit m_{ee} spectrum:
 - J/ ψ template from simulation
 - analytic approx.: e⁺e⁻ continuum + *hh* background

STAR Preliminary

- Total J/ψ signal ~300 events
- Fit in p_T^2 bins $\rightarrow d\sigma/dp_T^2$

 Clean single-neutron tagging in ZDC:

UPC J/ ψ p₊²~|t| in d+Au

• Data don't distinguish w.f.'s AV18 vs. Hulthen; Hulthen shown here:

- Coherent/incoherent separation not as obvious as for Au:
 d not much larger than nucleon, p_T² dist. not so different
- Dipole model*: describe coherent/incoherent @ low p_T²
 need fluctuations @ higher p_T² (like Au, Sartre ✓)
- n-tag: suppress coherent near p_T²~0; lose tagger acceptance higher p_T²

*H. Mäntysaari and B. Schenke, Phys.Rev.C 101 (2020) 1, 015203

UPC J/ψ in p↑+Au

Generalized Parton Distributions:

- GPDs: Correlated quark momentum and helicity distributions in transverse space
- Access to: 3D imaging of proton q & g orbital angular momentum L_g & L_g
- GPDs for each q,g: $H^{q,g}/E^{q,g}(x,\xi,t)$ conserve/flip nucleon helicity
- The GPDs E^{q,g} related to orbital angular momentum

Photoproduction w/ polarized protons

• Target particle transversely polarized proton p1: J/ψ photoproduction $d\sigma/d\phi \propto 1 + A_N^{\gamma} \cos(\phi)$

 φ = azimuthal angle around beam axis

$$ullet$$
 A $^{\gamma}_{
m N}$ calculable with GPDs*: $A_N^{\gamma} \propto p_T \cdot rac{{
m Im}(H^g \cdot E^{g*})}{|H^g|^2}$

- $A_N^{\gamma} \propto E^g \Rightarrow$ sensitive to gluon orbital angular momentum L
- Unique RHIC capability: polarized protons, p↑Au run in 2015
- *J.P. Lansberg, L. Massacrier, L. Szymanowski, J. Wagner, Phys.Lett. B793 (2019) 33-40)

UPC processes in p↑+Au

 $J/\psi \rightarrow e^+ + e^-$

 $\gamma p \uparrow J/\psi$ photoproduction:

 Au photon source, p↑ target dominant process

 γ Au J/ ψ photoproduction:

p↑ photon source, Au target

Also:

Continuum e⁺e⁻ QED 2-γ process

 $\psi(2S)$ & inelastic incoherent processes seen in Au+Au: not discernible w/ statistics this data sample

UPC procs → p↑+Au data

• As for Au+Au fit sum MC templates to data:

• m_{ee}: $|y| < 1, p_{_{
m T}} < 1.5 \overline{\text{GeV/c}}$

- Fit data to sum J/ψ (γp↑ & γAu) and QED 2γ
- m_{ee}: good description all features: J/ψ peak location, width & rad. tail QED 2γ continuum
- p_⊤: γp↑ @ high p_⊤ ~ AuAu incoherent, γAu @ low p_⊤ ~ AuAu coherent
- Want A^γ_N for γp↑ process; γAu & 2γ background @ low p_τ, cut out
- For A_N^{γ} : 0.2 < p_{τ} < 1.5 GeV/c, purity = 92%

UPC J/ψ A^γ_N

- Signal range (2.8<m $_{\rm ee}$ <3.2 GeV/c 2 , 0.2<p $_{\rm T}$ <1.5 GeV/c), count events for: p↑ beam spin up/down, J/ ψ cos(ϕ) >0 or <0 (total 231 events)
- Correct for: purity = 92%, p↑ beam polarization ⟨P⟩ = 61.3%
- Result:

$$A_N^{\gamma} = 0.05 \pm 0.20$$
 @ $\langle W_{\gamma p} \rangle = 23.8$ GeV, $\langle p_T \rangle = 0.48$ GeV/c $W_{\gamma p} = \gamma p$ c.m. energy

- Null result, but proof of principle this measurement
- Lansberg et al. have curve \(\rho_T \) = 0.7 GeV/c,
 remade for 0.48 GeV: (J. Wagner, private communication)
- Can see what's needed to test such models:
 - higher statistics
 - lower W_{yp}
- Future @ RHIC?

Future: UPC J/ψ A^γ,

Soon: 2017 √s=510 GeV p↑+p↑, analysis starting, but W_{γp}~40 GeV

- These analyses used central STAR -1<η<1
- Already in STAR:
 iTPC tracking,
 endcap EMC triggering
 1<η<2.2
- Coming soon 2021+ STAR Forward Upgrade w/ tracking & calorimetry 2.5<η<4
- Future RHIC p↑+Au runs 2022+: measure @ lower W_{yp}
 - higher cross section (stats.)
 - larger A^{γ}_{N}
- Should be sensitive to e.g. Lansberg et al. models

Future: UPC J/ψ ~ threshold

- Future 2024 run expected W_{yp} dist.:
- With Forward Upgrade acceptance down to J/ψ threshold ~4 GeV
- In threshold region $W_{\gamma\rho}$ < 5 GeV: only ~75 events
- Model sensitivity not clear,
 e.g. p₋² distribution:

Highlights & outlook: UPC VM @ RHIC

Highlights

- Clear 2 components coherent/incoherent: J/ψ in d,Au, ρ in Au
- Coherent component diffractive structure: ρ in Au
- High p_{τ}^{2} incoherent \Rightarrow subnucleonic fluctuations: J/ψ in d,Au
- Sartre, w/ subnuc. fluc. good description: J/ψ coh. & incoh. in Au
- Neutron tagging nuclear dissociation: J/ψ in d,Au
- Proof-of-principle asymmetry ∝ Eg: J/ψ in p↑

Outlook future RHIC runs*, STAR extended kinematic range

- Au+Au runs 2023 & 2025: 7× statistics
- p↑+Au run 2024: 9× statistics
- Also p↑+p↑ runs 2022, 2024: asymmetry measurement
- No future d+Au presently planned ②,
 need to begin EIC construction! ②

^{*&}quot;The STAR Beam Use Request for Run-21, Run-22 and data taking in 2023-25",

⁻ The STAR experiment. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0755

Extras

Au+Au: p_T for 3 ZDC categories

Shown w/ vertical scale same range 10³:

≥1n both ZDCs:

≥1n one ZDC, other ZDC empty:

• both ZDCs empty:

- Coherent peak always present & prominent regardless of neutrons: Coulomb dissociation
- Incoherent components only present when some neutrons
 - → fit consistent with zero for 0n0n

$\gamma + \gamma \rightarrow e^+ + e^-$

Free byproduct these data: $d\sigma/m_{ee}$ for $\gamma+\gamma\rightarrow e^{+}+e^{-}$

- STARlight: describes shape over 3 orders magnitude in σ
- Data σ ~15% > STARlight:
- STARlight: no e⁺e⁻ inside nucleus

 Improved QED calculations agree better with data, here for lower m_a;

p+Au: p_T, m_{ee} distributions

• p_T vs m_{ee} for opp. sign pairs:

• m_{ee} dist. or opp./like sign pairs:

- Box shows fiducial region for A^γ_N measurement:
 - $2.8 < m_{ee} < 3.2 \text{ GeV/c}^2$,
 - $0.2 < p_{T} < 1.5 \text{ GeV/c}$

 For final distributions take (opposite-like) sign

Cross-ratio (for non-spin experts)

 If have one beam w/ spin up, and detectors left (L) and right (R) of beam, can measure asym. but would need to know relative acceptances of L/R detectors

L det.

 If have one detector left of beam, and beam bunches w/ spin up (+) and down (-), can measure asym., but would need to know relative luminosities of +/- beams

 If have both L/R detectors and +/- bunches, acceptances and luminosities cancel out in the "cross-ratio"*:

$$\epsilon = \frac{\sqrt{N_{R+}N_{L-}} - \sqrt{N_{L+}N_{R-}}}{\sqrt{N_{R+}N_{L-}} + \sqrt{N_{L+}N_{R-}}}$$

*NIM 109 (1973) 41